
Computers and Electronics in Agriculture 127 (2016) 302–310
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier .com/locate /compag
Original papers
Optimization of management zone delineation by using spatial principal
components
http://dx.doi.org/10.1016/j.compag.2016.06.029
0168-1699/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Rua Universitária, 1619, Cascavel, Paraná CEP: 85819-
110, Brazil.

E-mail addresses: alan@utfpr.edu.br (A. Gavioli), eduardo.souza@unioeste.br
(E.G. Souza), bazzi@utfpr.edu.br (C.L. Bazzi), luciana_pagliosa@hotmail.com
(L.P.C. Guedes), kelynschenatto@gmail.com (K. Schenatto).
Alan Gavioli a,b, Eduardo Godoy Souza b,⇑, Claudio Leones Bazzi a, Luciana Pagliosa Carvalho Guedes b,
Kelyn Schenatto c

aDepartment of Computer Science, Federal University of Technology of Paraná (UTFPR), Medianeira, Paraná, Brazil
b PGEAGRI, Technological and Exact Sciences Center, State University of West Paraná (UNIOESTE), Cascavel, Paraná, Brazil
cDepartment of Computer Science, Federal University of Technology of Paraná (UTFPR), Santa Helena, Paraná, Brazil
a r t i c l e i n f o

Article history:
Received 18 February 2016
Received in revised form 6 May 2016
Accepted 23 June 2016

Keywords:
Fuzzy C-means
Moran’s index
MULTISPATI-PCA
PCA
Precision agriculture
a b s t r a c t

Definition of management zones is the delimitation of sub-areas with similar topographic, soil and crop
characteristics within a field. Among the many variables that can be used for this definition, those that
are stable and spatially correlated with yield are more often recommended for use. Clustering algorithms
such as Fuzzy C-means are also frequently applied to define management zones. Three variable selection
techniques that can be applied with Fuzzy C-means are spatial correlation analysis, principal component
analysis (PCA), and multivariate spatial analysis based on Moran’s index PCA (MULTISPATI-PCA). In this
study, the efficiency of each of these three techniques used in conjunction with the clustering method
was assessed. Furthermore, a new variable selection approach, named MPCA-SC, based on the combined
use of Moran’s bivariate spatial autocorrelation statistic and MULTISPATI-PCA, was proposed and tested.
The evaluation was performed by using data collected from 2010 to 2014 from three agricultural areas in
Paraná State, Brazil, with corn and soybean crops, generating two, three, and four classes. The delineated
management zones were different according to the method used, and MPCA-SC provided the best perfor-
mance for the Fuzzy C-means algorithm and the best variance reduction values of the data after the
delimitation of the sub-areas. Furthermore, MPCA-SC provided management zones with greater internal
homogeneity, making them more viable for implementation from the viewpoint of field operations.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Management zones (MZs) are defined as the delimitation of
sub-areas within a field. Such definition allows for these sub-
areas to be uniformly managed. A MZ shows similar characteristics
of soil and topography, and therefore, require similar amounts of
agricultural supplies (Moral et al., 2010; Schepers et al., 2004). This
delineation can contribute significantly to enable precision agricul-
ture for a larger number of producers, because the homogeneous
rate in each sub-area enables the use of conventional agricultural
machines.

The MZs can also represent indicators for soil and planted crops
sampling, reducing the number of samples to be analyzed without
compromising on the reliability of the results. Yield data, chemical
and physical data of the soil, topographic data and data on the
apparent electrical conductivity of the soil, vegetation indexes,
and combinations of these data, may be used to define MZs
(Fraisse et al., 2001). However, it is recommended that stable vari-
ables (attributes) correlated with yield be used for delimiting the
sub-areas (Doerge, 2000). This is so because the variables used
for the definition are intended to be used for several years; hence,
chemical attributes are eliminated. For this process of delimitation,
is also customary to employ clustering algorithms such as Fuzzy C-
means, also known as Fuzzy K-means (Fridgen et al., 2004; Fu et al.,
2010; Hornung et al., 2006; Li et al., 2013; Zhang et al., 2013).

Weighting and selection of variables are difficult tasks in cluster
analysis. The capacity of cluster software to process a large number
of variables tends to encourage users to use many in this process.
However, one should be aware that the choice of variables and that
of the weights assigned to them often influence the determination
of clusters (Gnanadesikan et al., 1995).

Three variable selection techniques that can be applied in com-
bination with the Fuzzy C-means algorithm are as follows: spatial
correlation analysis (Reich, 2008; Schepers et al., 2004), applied as
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Table 1
Variables collected by year, for each experimental area.

Variable
(attribute)

Field A Field B Field C

2012 2013 2014 2012 2013 2014 2010 2011

SPR 0–0.1 m (MPa) X X X X X X X
SPR 0.1–0.2 m (MPa) X X X X X X X
SPR 0.2–0.3 m (MPa) X X X X X X X
pH X X X
Elevation (m) X X X
Slope (�) X X
Density (g cm�3) X X
Sand (%) X X X
Silt (%) X X X
Clay (%) X X X
OM (%) X X
Soybean yield (t ha�1) X X X X X X X X
Corn yield (t ha�1) X X

SPR: soil penetration resistance; OM: organic matter.
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described by Bazzi et al. (2013) and Schenatto et al. (2016); princi-
pal component analysis (PCA) (Hotelling, 1933), used by Fraisse
et al. (2001), Li et al. (2007), Moral et al. (2010), and Cohen et al.
(2013); and multivariate spatial analysis based on Moran’s index
PCA (MULTISPATI-PCA) (Dray et al., 2008), applied by Córdoba
et al. (2013, 2016), and Peralta et al. (2015).

For spatial correlation analysis, Moran’s bivariate spatial auto-
correlation statistic (Ord, 1975) is used to evaluate whether the
variables have correlation and spatial autocorrelation. Thereafter,
the variables without spatial dependence, those with no correla-
tion with yield, and redundant variables are eliminated.

PCA is a multivariate analysis technique that allows identifying
the variables that account for most of the total variance in data
sets. When using PCA, a new set of synthetic variables named prin-
cipal components (PCs), which are uncorrelated among themselves
and commonly denoted as linear combinations of the original vari-
ables, are obtained from the original variables through some trans-
formations (Johnson and Wichern, 2007).

MULTISPATI-PCA aims to add a spatial restriction on the tradi-
tional PCA, enabling it to be executed considering the existence
of spatial dependence in sets of georeferenced data. This technique
relies on introducing a spatial weighting matrix, which is con-
structed using Moran’s bivariate spatial autocorrelation statistic,
to the PCA. Its advantage over the PCA is that the scores obtained
with MULTISPATI-PCA maximize the spatial autocorrelation
between points, while those obtained with PCA maximize the total
variance (Córdoba et al., 2013; Dray et al., 2008).

Therefore, the scores generated with MULTISPATI-PCA show
strong spatial structures in the first PCs, while the PCA scores
may show spatial structures in any component, even in the last,
which in practice are generally disregarded (Arrouays et al., 2011).

The aim of this study was to evaluate the efficiency of spatial
correlation analysis, PCA, and MULTISPATI-PCA techniques, when
used jointly with the Fuzzy C-means algorithm to define MZs. In
addition, a new approach of generating synthetic variables for
defining MZs, based on the joint use of spatial correlation analysis
and MULTISPATI-PCA, was proposed and assessed.

2. Materials and methods

2.1. Data sets

Data collected between 2010 and 2014 from three commercial
agricultural areas with corn and soybean crops (Fig. 1), located in
Paraná State, Brazil, were used. The soils were classified as typical
dystroferric Red Latosol (Embrapa, 2006) and grown in a no-till
system. Field A extends for 15 ha, and is located in the municipality
of Céu Azul (central geographical location 25�0603200S and
53�4905500W, and an average elevation of 460 m). Field B extends
for 9.9 ha, and is located in the municipality of Serranópolis do
Iguaçu (central geographical location 25�2402800S and
54�0001700W, and an average elevation of 355 m). Field C extends
for 19.8 ha, and is located in the municipality of Cascavel (central
Field A Field B

Fig. 1. The three experimental areas: field A: Céu Azul, Paraná, Brazil; field B
geographical location 24�5700800S and 53�3305900W, and an average
elevation of 650 m).

Only those variables considered stable (Table 1) were used for
defining the classes, to meet the recommendation of Doerge
(2000). Irregular sampling grids were used to assign 40
(2.67 points ha�1), 42 (4.24 points ha�1), and 68 (3.43 points ha�1)
sample points to areas A, B, and C, respectively, with the sampling
points located in the central imaginary line between the contours
present in each area.

Soil samples were collected at depths of 0–0.2 m. The soil pen-
etration resistance (SPR) was determined for the depths 0–0.1 m,
0.1–0.2 m, and 0.2–0.3 m, using an electronic meter of soil com-
paction Falker PenetroLOG PLG1020. The data of elevation of the
three areas were obtained using an electronic total station of high
precision Topcon GPT-7505, and subsequently, the slopes were cal-
culated depending on the elevation of the sampling points.

Soybean yield data for area A was determined by means of a
harvesting monitor attached to a CASE IV harvester. As for areas
B and C, yield was determined by hand harvesting of a 1 m2 sample
area in each of the sample points. In all cases, yield values were
corrected to 13% water content.

To meet the requirement of stability of the yield data, which is
normally heavily influenced by climate and rainfall, the data of
soybean yield for the three areas, and data of corn yield for area
B, were standardized through the standard score technique
(Eq. (1); Larscheid and Blackmore, 1996). Then, the arithmetic
average of the standardized values of available years was calcu-
lated, generating a single variable corresponding to the average
of standard yield.

PiN ¼ ðPi � PÞ
S

ð1Þ

where PiN is the standardized value for the sample point i; Pi is the
original value of the sample point i; P corresponds to the arithmetic
Field C

: Serranópolis do Iguaçu, Paraná, Brazil; field C: Cascavel, Paraná, Brazil.
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average of all the original values of the points to be standardized;
and S corresponds to the standard deviation of the original values.

2.2. Variable selection

Six approaches for selecting variables for defining MZs were
compared:

(1) All-Attrib: no disposal of stable variables.
(2) Spatial-Matrix: after calculating Moran’s bivariate spatial

autocorrelation statistic (Eq. (2); Czaplewski and Reich,
1993) among all the variables by using the software for
management zones definition SDUM (Bazzi et al., 2013),
variables were selected by the procedure proposed by
Bazzi et al. (2013): (a) elimination of variables with no sig-
nificant spatial autocorrelation at 95% significance; (b)
removal of the variables that were not correlated with yield;
(c) decreasing ordination of the remaining variables,
considering the degree of correlation with yield; and (d)
elimination of variables which are correlated with each
other, with preference to the withdrawal of those variables
with lower correlation with yield.

IXY ¼
Pn

i¼1

Pn
j¼1Wij � Xi � Yj

W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

X �m2
Y

q ð2Þ

where Wij is the spatial association matrix, calculated by
Wij ¼ ð1=ð1þ DijÞÞ; Dij is the distance between points i and
j; Xi is the value of variable X transformed, at point i; Yj is
the value of the variable Y transformed, at point j; W corre-
sponds to the sum of the degrees of spatial association,
obtained from the Wij matrix, for i– j; m2

X corresponds to
the sample variance of X; and m2

Y corresponds to the sample
variance of Y . Note that the transformation of a variable Z
should be interpreted as the procedure performed on their
values so that it is on an average equal to zero, applying
the equation Zk ¼ ðzk � ZÞ, wherein Z is the sample mean of Z;

(3) PCA-All (traditional PCA): calculation of PCs from all stable
variables, such that the amount of PCs selected was based
on the criterion of representation of at least 70% of the total
variability of the data associated with the original variables
(Johnson and Wichern, 2007).

(4) MPCA-All (traditional MULTISPATI-PCA): calculation of spa-
tial principal components (SPCs) from all stable variables,
such that the amount of SPCs selected was also based on
the criterion of representation of at least 70% of the total
variability of the original data.

(5) PCA-SC: PCA with same parameters as in approach (3), how-
ever, applied only on the stable variables that showed signif-
icant spatial correlation with the yield of each area.

(6) MPCA-SC (the new approach developed): MULTISPATI-PCA
with same parameters as in approach (4), but also applied
only on the stable variables that were significantly corre-
lated with the yield of each area.

The PCA-All, MPCA-All, PCA-SC, and MPCA-SC approaches were
applied to the data of each area by developing a routine in the sta-
tistical software R (R Core Team, 2014), including the packages
geoR, gstat, ade4 (Chessel et al., 2004), and spdep (Bivand, 2012).
The package spdep provided the function dnearneigh in order to
identify the neighbors of each sample point (required by MPCA-
All and MPCA-SC). This function uses euclidean distance to com-
pute the distance of a point from another and returns a list of
neighbors for each point, based on the value set to neighborhood
radius. This distance was determined experimentally for each loca-
tion: area A, 240 m radius; area B, 120 m radius; and area C, 200 m
radius.

The object-relational database system PostgreSQL 9.0.5, main-
tained by the PostgreSQL Global Development Group, was used
for data storage. The software PostGIS 1.5.5, a spatial database
extender for PostgreSQL maintained by the PostGIS Project
Steering Committee, was also applied. Furthermore, the software
pgAdmin III, maintained by the pgAdmin Development Team,
was used for managing the databases that were created.

2.3. Interpolation and definition of MZs

Data interpolation in advance is important for generating MZs
with smoother contours and for greater reduction in data variance
(Schenatto et al., 2016). The authors found that the kriging interpo-
lator had the best performance, but the advantage of using this
interpolator over the inverse square distance method was small.
Further, the software SDUM has the limitation that it cannot inter-
polated by kriging, but it is the only one free software that can both
interpolate and define MZs. Because of this, data of the selected
variables were interpolated using the inverse square distance
method with pixels in an area of 5 � 5 m and 10 neighbors. After
interpolation, resulting data were used as the input for the Fuzzy
C-means algorithm, considering error parameter equals to 0.0001
and weight index equals to 1.3, thus generating two, three, and
four classes. For interpolating data, defining classes, and delineat-
ing MZ maps, the software SDUM was used. For All-Attrib and
Spatial-Matrix approaches, variables were standardized before
interpolation (Eq. (3); Mielke Jr. and Berry, 2007), with the objec-
tive of maintaining the same data range, regardless of the used
variable.

Pin ¼ Pi �Median
Range

ð3Þ

where Pi is the value of the pixel i to be standardized, and Pin is the
standardization result.

2.4. Evaluation of MZs

The performance of the variable selection approaches was
assessed using six indexes:

(1) Variance Reduction (VR) (Li et al., 2007; Ping and
Dobermann, 2003): is calculated for the standardized aver-
age yield, with the expectation that the sum of the variances
of the data fromMZs generated is smaller than the total vari-
ance (Eq. (4)).

VR ¼ 1�
Pc

i¼1Wi � Vmzi

Vfield

� �
� 100 ð4Þ

where c is the number of MZs; Wi is the proportion of the
area of i-th MZ to the total area; Vmzi is the data variance of
the i-th MZ; and Vfield is the data variance corresponding to
the area as a whole.

(2) Fuzziness Performance Index (FPI) (Fridgen et al., 2004): it
allows determining the degree of separation between the
fuzzy c groups generated from a data set. FPI varies between
0 and 1, such that the closer this value to 0, the lower is the
degree of sharing of elements among the generated groups
(Eq. (5)).

FPI ¼ 1� c
ðc � 1Þ 1�

Xn
j¼1

Xc
i¼1

ðmijÞ2=n
" #

ð5Þ
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where c is the number of groups; n is the number of elements
in the data set; and mij is the element of the fuzzy pertinence
matrix M.

(3) Modified Partition Entropy (MPE) (Boydell and McBratney,
2002): it is an estimate of the level of difficulty of organiza-
tion of c groups, such that the closer the value to 0, the lower
is the difficulty of organizing groups (Eq. (6)).

MPE ¼ �Pn
j¼1

Pc
i¼1mij logðmijÞ=n
log c

ð6Þ

where c is the number of groups; n is the number of elements
in the data set; and mij is the element of the fuzzy pertinence
matrix M.

(4) Smoothness Index (SI): it gives the pixel-by-pixel frequency
of change of classes in a thematic map in the horizontal and
vertical directions and along the diagonal (Eq. (7)). It also
characterizes the smoothness of the boundary curves of
the MZs. If a map has a completely homogeneous area, the
result is SI equals to 100% because of lack of changes in class.
On the other hand, if the map is completely generated with
random values, the SI will have a value close to 0.
SI ¼ 100

�
Pk

i¼1NMHi

4PH
þ
Pk

j¼1NMVj

4PV
þ
Pk

l¼1NMDdl

4PDd
þ
Pk

m¼1NMDem

4PDe

 !
� 100

 !

ð7Þ

where NMHi is the number of changes in row i (horizontal);
NMVj is the number of changes in column j (vertical); NMDdl

is the number of changes in diagonal l (right diagonal Dd);
NMDem is the number of changes in diagonal m (left diagonal
De); k is the maximum number of pixels in a row, column, or
diagonal; PH is the possibility of changes in horizontal pixels;
PV is the possibility of changes in vertical pixels; PDd is the
Table 2
Variables selected by each of the six approaches, and Moran’s index with the normalized

Field Variables MI with NAY SA CY NR Varia

All-A

A SPR 0–0.1 m (MPa) �0.053* Y Y Y Y
SPR 0.1–0.2 m (MPa) �0.017 N N N Y
SPR 0.2–0.3 m (MPa) �0.022 N N N Y
pH �0.034* N Y N Y
Elevation (m) 0.100* Y Y Y Y
Slope (�) �0.016 N N N Y
Density (g cm�3) 0.023 N N N Y
Sand (%) �0.075* Y Y N Y
Silt (%) 0.028 N N N Y
Clay (%) �0.040* Y Y N Y

B SPR 0–0.1 m (MPa) 0.039* Y Y Y Y
SPR 0.1–0.2 m (MPa) 0.044* N Y N Y
SPR 0.2–0.3 m (MPa) �0.014 N N N Y
pH �0.029* N Y N Y
Elevation (m) 0.051* Y Y Y Y
Sand (%) 0.007 N N N Y
Silt (%) �0.013 Y N N Y
Clay (%) 0.012 Y N N Y
OM (%) �0.037* N Y N Y

C SPR 0–0.1 m (MPa) �0.002 N N N Y
SPR 0.1–0.2 m (MPa) 0.114* Y Y N Y
SPR 0.2–0.3 m (MPa) 0.102* Y Y N Y
pH 0.024 N N N Y
Elevation (m) 0.137* Y Y Y Y
Slope (�) 0.011 Y N N Y
Density (g cm�3) �0.029 N N N Y
Sand (%) 0.078* Y Y N Y
Silt (%) 0.021 N N N Y
Clay (%) �0.082* Y Y N Y

* Significative value; SPR: soil penetration resistance; OM: organic matter; MI: Moran
correlation with yield; NR: not redundant; Y: yes; N: no.
possibility of changes in the right diagonal Dd; and PDe is
the possibility of changes in the left diagonal De .

(5) Analysis of Variance (ANOVA): the yield values were com-
pared between classes by using the normalized average
yield, and performing the Tukey’s range test to identify
whether the generated classes showed significant differ-
ences in normalized average yield (first, we confirmed that
there was no spatial dependence within each class).

(6) Improved Cluster Validation Index (ICVI): based on the CVI
index (Schenatto et al., 2016), the ICVI index is proposed in
this work (Eq. (8)) to solve a possible problem when the esti-
mates for FPI, MPE, and VR did not indicate similar methods
to the definition of MZs. ICVI lies between 0 and 1, such that
the greater the value of VR and lower the values of the FPI
and the MPE, the closer will the ICVI be to 0. In a comparison
between n clustering methods, the best method is the one
with the lowest ICVIi.

ICVIi ¼ 1
3
� FPIi

MaxfFPIgþ
MPEi

MaxfMPEgþ 1� VRi

MaxfVRg
� �� �

ð8Þ

where FPIi is the FPI value of the i-th variable selection
method; MPEi is the MPE value of the i-th variable selection
method; VRi is the VR value of the i-th variable selection
method; and Max{Index_X} represents the maximum value
of the Index_X index among the n variable selection methods.
3. Results and discussion

3.1. Variables selected

The variables selected for defining the classes and the values of
Moran’s bivariate spatial autocorrelation statistic, between each
average yield.

ble selection approaches

ttrib Spatial-Matrix PCA-All MPCA-All PCA-SC MPCA-SC

Y Y Y Y Y
N Y Y N N
N Y Y N N
N Y Y Y Y
Y Y Y Y Y
N Y Y N N
N Y Y N N
N Y Y Y Y
N Y Y N N
N Y Y Y Y
Y Y Y Y Y
N Y Y Y Y
N Y Y N N
N Y Y Y Y
Y Y Y Y Y
N Y Y N N
N Y Y N N
N Y Y N N
N Y Y Y Y
N Y Y N N
N Y Y Y Y
N Y Y Y Y
N Y Y N N
Y Y Y Y Y
N Y Y N N
N Y Y N N
N Y Y Y Y
N Y Y N N
N Y Y Y Y

’s bivariate index; NAY: normalized average yield; SA: spatial autocorrelation; CY:



Table 3
Statistics of the principal components for PCA-All, MPCA-All, PCA-SC, and MPCA-SC.

Field Component Variance Percentage Sum of
percentages

Moran’s
index

A PCA-All
PC1 2.98 27 27 0.23
PC2 2.57 23 50 0.15
PC3 1.50 14 64 �0.05
PC4 1.15 10 74 �0.05

MPCA-All
SPC1 2.81 53 53 0.29
SPC2 2.45 47 100 0.15

PCA-SC
PC1 2.94 49 49 0.22
PC2 1.27 21 70 0.09
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variable and the normalized average yield value, are listed in
Table 2. Because the values are not standardized, even small values
of Moran’s index can be statistically significant. In this case, the
values are important if the statistic is significant at 0.05 level.

It was found that elevation was the variable with a strong spa-
tial correlation with normalized average yield in all three fields.
These findings agree with those of Jaynes et al. (2005) and
Peralta et al. (2013), which suggests that there is a spatial associa-
tion between this variable and yield of soybeans and corn.

According to the criterion of spatial correlation matrix used in
the Spatial-Matrix approach, the variables selected for areas A
and B were elevation and SPR 0–0.1 m, while for the area C, only
elevation was selected.
MPCA-SC
SPC1 2.77 71 71 0.25
SPC2 1.11 29 100 0.13

B PCA-All
PC1 3.20 32 32 0.01
PC2 1.93 19 51 0.01
PC3 1.33 13 64 0.07
PC4 1.18 12 76 0.03

MPCA-All
SPC1 1.66 35 35 0.19
SPC2 1.50 32 67 0.11
SPC3 0.68 15 82 0.08

PCA-SC
PC1 2.56 43 43 0.03
PC2 1.34 22 65 0.11
PC3 0.92 15 80 �0.05

MPCA-SC
SPC1 1.67 61 61 0.19
SPC2 0.64 23 84 0.05

C PCA-All
PC1 3.44 31 31 0.34
PC2 1.40 13 44 0.03
PC3 1.27 12 56 0.22
PC4 1.10 10 66 �0.02
PC5 0.99 9 75 0.03

MPCA-All
SPC1 3.07 48 48 0.44
SPC2 1.31 21 69 0.24
SPC3 1.14 18 87 0.06

PCA-SC
PC1 2.87 48 48 0.62
PC2 1.12 19 67 0.36
PC3 0.98 16 83 0.10

MPCA-SC
SPC1 2.63 68 68 0.65
SPC2 1.21 32 100 0.46
3.2. Creation of the principal components

As expected, when considering all stable variables for obtaining
the PCs, the necessary number of components was higher than
when only those variables with significant spatial correlation with
normalized average yield were selected (variables with value
equals to ‘‘Y” in Table 2, for PCA-SC and MPCA-SC). This suggests
that variables spatially uncorrelated to yield can disrupt the con-
struction of the components, both in the case of PCA-All and
MPCA-All. Comparison of the four approaches based on PCA or
MULTISPATI-PCA showed that MPCA-SC had the best performance
in reducing the dimensionality of data without significant loss of
information, and therefore, MPCA-SC ensured the highest cumula-
tive percentage representation of the original variance with smal-
ler number of PCs in the three areas (Table 3). This is because with
MPCA-SC, only two SPCs are required for each field, while the other
techniques required up to five components.

When comparing PCA-All and MPCA-All, or PCA-SC and MPCA-
SC, from the viewpoint of variance and spatial autocorrelation
(Table 3), the first spatial component (SPC1) had lower variance
and higher spatial autocorrelation than the first component
(PC1), in the three fields. This indicates that the spatial autocorre-
lation indexes increased with the use of MULTISPATI-PCA. There-
fore, this technique facilitated the selection of principal
components needed for definition of MZs in the fields. Similar
results were obtained by Córdoba et al. (2012,2013); in their stud-
ies, although they have not reported an approach similar to MPCA-
SC, they applied PCA-All and MPCA-All to the variables elevation,
SPR, apparent electrical conductivity of the soil, and soybean and
wheat yield, in agricultural areas in Argentina.

In the analysis of the coefficients of PCs and SPCs, which act as
weights for the original variables in that components (Tables 4–6),
the first component (PC1 or SPC1) had higher weighting coeffi-
Table 4
Weights for the variables in the PCs and SPCs, for field A.

Variables Elevation SPR 0–0.1 pH Clay Sand

PCA-All
PC1 0.49 �0.26 �0.39 0.45 �0.49
PC2 0.07 �0.41 0.12 �0.30 �0.04
PC3 0.25 �0.03 0.23 �0.20 �0.07
PC4 �0.16 �0.38 �0.18 0.07 �0.02

MPCA-All
SPC1 0.53 0.02 �0.26 0.44 �0.49
SPC2 0.45 �0.48 0.01 �0.14 �0.17

PCA-SC
PC1 0.50 �0.29 �0.38 0.43 �0.50
PC2 0.08 �0.55 0.24 �0.47 0.16

MPCA-SC
SPC1 0.56 �0.07 �0.26 0.52 �0.54
SPC2 �0.39 0.72 �0.13 0.52 �0.01
cients, in absolute values, for the variables as follows: elevation
and clay to field A; elevation and SPR 0–0.1 m to field B; elevation,
clay, and SPR 0.1–0.2 m to field C.
Silt Slope Density SPR 0.1–0.2 SPR 0.2–0.3

�0.07 �0.12 0.07 �0.05 0.01
0.46 0.04 �0.10 �0.49 �0.48
0.35 0.49 0.43 0.38 0.25
�0.08 0.62 �0.58 0.09 0.19

�0.18 �0.22 0.20 0.15 0.22
0.38 0.14 0.05 �0.29 �0.46



Table 5
Weights for the variables in the PCs and SPCs, for field B.

Variables Elevation SPR 0–0.1 SPR 0.1–0.2 OM pH SPR 0.2–0.3 Sand Clay Silt

PCA-All
PC1 �0.36 �0.29 �0.43 0.43 0.22 �0.29 �0.26 �0.31 0.34
PC2 0.10 0.19 0.19 �0.20 �0.42 0.22 �0.30 �0.51 0.53
PC3 0.37 �0.21 �0.03 �0.14 0.32 0.21 0.07 �0.22 0.18
PC4 0.37 0.61 0.04 0.16 0.30 �0.51 0.24 �0.18 0.15

MPCA-All
SPC1 �0.76 0.07 �0.31 0.27 �0.02 0.07 �0.12 �0.01 0.07
SPC2 �0.09 0.04 0.44 �0.10 �0.18 0.85 �0.13 �0.04 0.12
SPC3 0.18 �0.14 �0.16 0.53 �0.40 0.22 0.59 0.11 �0.27

PCA-SC
PC1 �0.43 �0.43 �0.51 0.49 0.35
PC2 0.42 �0.10 0.02 �0.11 0.46
PC3 0.27 �0.65 �0.08 �0.43 �0.54

MPCA-SC
SPC1 �0.76 0.05 �0.35 0.30 �0.02
SPC2 �0.43 �0.09 �0.05 �0.57 0.60

Table 6
Weights for the variables in the PCs and SPCs, for field C.

Variables Elevation SPR 0.1–0.2 SPR 0.2–0.3 Clay Sand SPR 0–0.1 Silt Slope Density pH

PCA-All
PC1 �0.40 �0.45 �0.42 0.27 �0.30 0.01 �0.24 0.04 0.39 �0.06
PC2 0.25 �0.19 �0.22 �0.01 �0.13 �0.63 0.07 0.42 0.05 �0.08
PC3 0.11 0.20 0.19 0.48 �0.51 �0.09 �0.03 �0.35 0.10 0.48
PC4 �0.06 0.29 0.34 �0.16 �0.14 �0.17 �0.49 �0.18 0.36 �0.55
PC5 �0.11 0.01 0.10 0.39 0.12 �0.41 0.54 �0.31 �0.05 �0.42

MPCA-All
SPC1 �0.41 �0.32 �0.30 0.53 �0.36 0.07 �0.22 �0.15 0.27 �0.01
SPC2 �0.38 �0.37 �0.31 �0.66 0.27 0.01 0.03 0.15 0.11 �0.08
SPC3 0.03 �0.17 �0.12 0.09 �0.25 0.11 0.07 0.85 0.09 �0.04

PCA-SC
PC1 �0.43 �0.52 �0.49 0.32 �0.30
PC2 �0.16 �0.20 �0.20 �0.58 0.66
PC3 0.41 �0.39 �0.49 �0.24 �0.05

MPCA-SC
SPC1 �0.44 �0.35 �0.32 0.58 �0.39
SPC2 �0.39 �0.37 �0.31 �0.66 0.28

Field A Field B Field C
2 MZs 3 MZs 4 MZs 2 MZs 3 MZs 4 MZs 2 MZs 3 MZs 4 MZs

(1) 

(2)  

(3) 

(4) 

(5) 

(6) 

Fig. 2. Thematic maps generated by the six approaches: (1) All-Attrib; (2) Spatial-Matrix; (3) PCA-All; (4) MPCA-All; (5) PCA-SC; (6) MPCA-SC.
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Table 7
Results for ANOVA (Tukey’s range test), VR, FPI, MPE, SI, and ICVI, for the three fields.

Field Classes Approach ANOVA (Tukey’s test) VR (%) FPI MPE SI (%) ICVI

C1 C2 C3 C4

All-Attrib a a 0.0 0.500 0.079 98.4 1
Spatial-Matrix a b 42.7 0.091 0.018 98.3 0.137

2 PCA-All a b 42.5 0.185 0.035 98.5 0.273
MPCA-All a b 25.5 0.161 0.030 98.6 0.368
PCA-SC a b 24.4 0.177 0.032 98.4 0.396
MPCA-SC a b 28.8 0.153 0.029 98.6 0.333
All-Attrib a a a 0.0 0.667 0.125 97.7 1
Spatial-Matrix a b b 22.6 0.156 0.032 96.8 0.307

A 3 PCA-All a a b 39.8 0.287 0.058 97.6 0.298
MPCA-All a a b 16.7 0.212 0.043 97.5 0.414
PCA-SC a b a 28.4 0.200 0.042 97.7 0.307
MPCA-SC a b b 33.6 0.210 0.043 97.7 0.272
All-Attrib a a a a 0.0 0.750 0.158 97.1 1
Spatial-Matrix a b b a 39.1 0.213 0.044 95.0 0.254

4 PCA-All a b b a 28.1 0.314 0.069 96.9 0.427
MPCA-All a ab b a 20.8 0.215 0.048 96.5 0.388
PCA-SC a b a b 48.9 0.178 0.038 97.0 0.159
MPCA-SC a a b b 33.7 0.182 0.041 97.2 0.271

All-Attrib a a 4.1 0.285 0.054 95.7 0.908
Spatial-Matrix a a 5.2 0.146 0.029 95.5 0.573

2 PCA-All a a 1.7 0.292 0.054 95.7 0.965
MPCA-All a b 15.1 0.255 0.048 95.8 0.612
PCA-SC a a 0.0 0.234 0.045 95.8 0.878
MPCA-SC a b 16.3 0.161 0.032 95.8 0.381
All-Attrib a a a 8.5 0.667 0.132 91.7 0.919
Spatial-Matrix a a a 11.6 0.153 0.034 94.7 0.385

B 3 PCA-All a a a 2.2 0.357 0.076 94.3 0.683
MPCA-All a ab b 21.7 0.333 0.071 94.0 0.472
PCA-SC a a a 17.9 0.327 0.069 93.6 0.500
MPCA-SC a b a 34.9 0.176 0.038 94.7 0.184
All-Attrib a b ab ab 22.8 0.536 0.119 91.2 0.774
Spatial-Matrix a ab b ab 15.3 0.239 0.052 89.8 0.476

4 PCA-All a a a a 7.7 0.415 0.095 93.1 0.781
MPCA-All a ab b ab -0.2 0.290 0.068 92.9 0.704
PCA-SC a a b a 21.2 0.316 0.073 93.6 0.525
MPCA-SC a a b a 33.7 0.205 0.046 93.8 0.256

All-Attrib a b 19.4 0.500 0.077 98.8 0.797
Spatial-Matrix a b 31.9 0.495 0.076 97.9 0.659

2 PCA-All a b 26.9 0.206 0.037 99.0 0.350
MPCA-All a b 23.2 0.162 0.030 98.6 0.329
PCA-SC a b 28.6 0.150 0.027 98.7 0.251
MPCA-SC a b 23.7 0.117 0.021 98.6 0.255
All-Attrib a a a 0.0 0.667 0.122 98.3 1
Spatial-Matrix a a b 28.0 0.108 0.023 96.4 0.157

C 3 PCA-All a b a 25.4 0.189 0.040 97.8 0.271
MPCA-All a b b 20.1 0.147 0.031 98.2 0.281
PCA-SC a b a 28.9 0.127 0.027 97.9 0.168
MPCA-SC a a b 31.8 0.085 0.017 98.4 0.089
All-Attrib a a a a 0.0 0.750 0.154 98.1 1
Spatial-Matrix a b bc ac 35.9 0.535 0.111 94.7 0.512

4 PCA-All a ab b c 26.6 0.286 0.061 96.3 0.371
MPCA-All a b ac bc 26.4 0.166 0.037 97.6 0.267
PCA-SC a b a a 38.5 0.175 0.039 97.1 0.175
MPCA-SC a b c a 40.0 0.146 0.032 97.3 0.134

Ci: class i.
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Variable elevation differed from the other parameters in that it
influenced PC1 and SPC1 in the three areas. The result for PC1 is
similar to the results obtained by Fraisse et al. (2001), who used
PCA for defining MZs in two agricultural areas with corn and soy-
bean crops in the United States. Saleh and Belal (2014) also applied
PCA for an area in Egypt and obtained similar results with regard to
the influence of elevation on PC1. The influence of clay on PC1 was
also observed by Moral et al. (2010), who used PCA for setting MZs
in an area in Spain. The considerable influence of the variables ele-
vation and SPR on SPC1 when defining MZs in various fields with
wheat crop in Argentina was also detected by Peralta et al.
(2015) and Córdoba et al. (2016).
3.3. Thematic maps

For each field, the delineated MZs differed according to the vari-
able selection approach used along with Fuzzy C-means (Fig. 2).

When using the All-Attrib approach for defining three or four
classes in field A, field operations are difficult to perform in at least
one of the classes owing to its small size and format. The same
problem exists in the case of Spatial-Matrix for four classes for field
C. Another situation that arose when using All-Attrib was that the
approach could not be used to define three or four classes for field
C. However, similar problems did not arise when using PCA-All,
PCA-SC, MPCA-All, and MPCA-SC.



Fig. 3. Graphs for MPE, FPI, ICVI, and VR, for the six approaches assessed, considering two, three and four classes.
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The results of the evaluations of the generated classes, accord-
ing to ANOVA (Tukey’s test), VR, FPI, MPE, SI, and ICVI indexes
(Table 7), make it possible to state that the division of each area
is possible in two classes with statistically different potential
yields. For field B, this result was obtained only with MPCA-All
and MPCA-SC.

Furthermore, MPCA-SC yielded usually the best results in terms
of the variance reduction index; in other words, this approach
identified classes with larger differences between the respective
normalized average yields and lower internal residual values.
Differences in the normalized average yield between classes indi-
cate that soil conditions influence the crop response. As previously
mentioned, for all areas, elevation was the variable that had the
greatest influence among all variables on SPC1, and therefore, this
variable was crucial to the results obtained with MPCA-SC, as
found by Córdoba et al. (2013) and Peralta et al. (2015) who used
MPCA-All.

The smoothness of the boundary curves of the MZs was
assessed by the smoothness index (SI, Table 7). It was confirmed
that MPCA-SC usually yielded the best results for all areas, regard-
less of the number of defined sub-areas. In other words, MPCA-SC
yielded sub-areas that were more viable in terms of field
operations.

Fig. 3 shows graphically the values of the MPE, FPI, ICVI, and VR,
provided by each approach assessed for the three fields. Analysis of
the values of the FPI and MPE indexes showed that the MPCA-SC
approach was the one that provided the best performance in com-
bination with Fuzzy C-means algorithm when defining the MZs.
This is because MPCA-SC showed the lowest values of FPI and
MPE. Consequently, this approach is also the one that stood out
from the viewpoint of the values of ICVI index.

The combined analysis of FPI, MPE, and ANOVA results confirms
the recommendation of the division of each area into two classes,
using MPCA-SC to define the variables. If this recommendation is
adopted, larger MZs with smoother boundaries are obtained.
Córdoba et al. (2016) and Peralta et al. (2015) also used lower FPI
and MPE values, as well as easier field operations, as the criteria
for choosing two classes.

The use of MPCA-SC allowed identification of the variables that
account for global spatial variation. By using this approach, the
part of the multidimensional variance that is spatially structured
was analyzed. In addition to the works mentioned above, similar
discussion about the treatment of multidimensional spatially
structured variance by using MULTISPATI-PCA was addressed in
the context of ecological data by Dray et al. (2008).
4. Conclusions

A case study of three fields showed that the MPCA-SC approach,
which combines spatial correlation analysis with the MULTISPATI-
PCA technique, can greatly improve the quality of management
zones (MZs). The defined MZs were larger and had smoother
boundaries, and consequently, were more viable in terms of field
operations.

MPCA-SC conducted, in most situations, distinguished the
classes with larger differences between the respective normalized
average yield values and lower internal residual values. This
approach provided the best dimensionality reduction of the origi-
nal data without significant loss of information for the three fields.
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